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Abstract

The Affleck–Kennedy–Lieb–Tasaki (AKLT) spin interacting model can be
defined on an arbitrary graph. We explain the construction of the AKLT
Hamiltonian. Given certain conditions, the ground state is unique and known
as the valence-bond-solid (VBS) state. It can be used in measurement-based
quantum computation as a resource state instead of the cluster state. We study
the VBS ground state on an arbitrary connected graph. The graph is cut into two
disconnected parts: the block and the environment. We study the entanglement
between these two parts and prove that many eigenvalues of the density matrix
of the block are zero. We describe a subspace of eigenvectors of the density
matrix corresponding to non-zero eigenvalues. The subspace is the degenerate
ground states of some Hamiltonian which we call the block Hamiltonian.

PACS numbers: 75.10.Pq, 03.65.Ud, 03.67.Mn, 03.67.−a

1. Introduction

The fields of statistical physics, condensed matter physics and quantum information theory
share a common interest in the study of interacting quantum many body systems. The concept
of entanglement in quantum mechanics has significant importance in all these areas. Much
of the current effort is devoted to the description and quantification of the entanglement
contained in strongly correlated quantum states. Quantum entanglement is a fundamental
measure of how much quantum effects we can observe and use to control one quantum system
by another, and it is the primary resource in quantum computation and quantum information
processing [6]. Entanglement properties play an important role in condensed matter physics,
such as phase transitions and macroscopic properties of solids [43, 44]. Extensive research has
been undertaken to investigate quantum entanglement for spin chains, correlated electrons,
interacting bosons as well as other models, see [3, 20, 26, 31, 34, 38, 39, 42, 45, 46, 49]
for reviews and references. Characteristic functions of quantum entanglement, such as von
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Neumann entropy and Rényi entropy, were obtained and discussed through studying reduced
density matrices of subsystems [11, 16, 17, 30, 32]. An area law for the von Neumann entropy
in harmonic lattice systems has been extensively studied [8, 9, 28].

Much insight in understanding entanglement of quantum systems has been obtained by
studying exactly solvable models in statistical mechanics. In 1987, Affleck, Kennedy, Lieb
and Tasaki proposed a spin interacting model known as the AKLT model [1, 2]. The model
consists of spins on a lattice and the Hamiltonian describes interactions between nearest
neighbors. The Hamiltonian density is a linear combination of projectors. The model
is similar to the Heisenberg anti-ferromagnet with a gap. The authors (AKLT) of [1, 2]
found the exact ground state, which has an exponentially decaying correlation function and a
finite energy gap. This model has been attracting enormous research interests since then
[10, 13, 33]. It can be defined and solved in higher dimensional and arbitrary lattices
[2, 12, 35, 47] and generalizable to the inhomogeneous (non-translational invariant) case
(spins at different lattice sites may take different values) and an arbitrary graph [36]. Given
certain conditions (as to be described later), the ground state has proven to be unique [4, 36].
It is known as the valence-bond-solid (VBS) state. The Schwinger boson representation of
the VBS state (see (17)) relates to the Laughlin ansatz of the fractional quantum Hall effect
[4, 26, 29]. The Laughlin wavefunction of the fractional quantum Hall effect is the VBS
state on the complete graph [24]. The VBS state illustrates ground state properties of anti-
ferromagnetic integer-spin chains with a Haldane gap [23]. In one dimension, the VBS
state is related to the matrix product state and deformed VBS models were studied in [37].
The theory of VBS state was generalized to the finitely correlated states and was essentially
developed by Fannes, Nachtergaele, Werner and others [14, 15]. In one dimension, the
correlation functions were obtained and studied in [15]. The entanglement of formation in
the VBS state was estimated in [40]. Brennen and Miyake showed that the VBS state can
be used as a resource state in measurement-based quantum computing instead of the cluster
state [7]. It was proved in [48] that the VBS state allows universal quantum computation
and an implementation of the AKLT Hamiltonian in optical lattices [19] has also been
proposed.

We shall consider a part of the system, i.e. a block of spins. It is described by the density
matrix of the block, which we call the density matrix later for short. The density matrix has
been studied extensively in [11, 18, 32, 36, 49]. It contains information of all correlation
functions [4, 31, 32, 50]. Furthermore, the entanglement properties of the VBS ground state
have been studied by means of the density matrix as in [10, 11, 12, 32, 49]. The von Neumann
entropy of the subsystem density matrix is a measure of entanglement of the VBS state.
The Rényi entropy is another measure of the entanglement. The entanglement entropy was
obtained in [11, 18, 32, 50].

The structure of the density matrix is important. For a one-dimensional AKLT spin
chain the density matrix has a lot of zero eigenvalues [50, 51]. The eigenvectors with
non-zero eigenvalues are the degenerate ground states of some Hamiltonian, which we shall
call the block Hamiltonian (see (23)). In the limit of large block, the density matrix is
proportional to a projector on the degenerate ground states of the block Hamiltonian. These
states are the only eigenstates of the density matrix with non-zero eigenvalues which contribute
to the entropy. Also, eigenstates of the density matrix are useful in quantum computing
because of quantum measurements. It was conjectured in [50] that eigenvectors of the density
matrix with non-zero eigenvalues always form degenerate ground states of some Hamiltonian
(the block Hamiltonian), which is generalizable to an arbitrary graph. In this paper we shall
give a general proof of this statement.
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k l

Figure 1. Example of a part of the graph including vertex k with zk = 3 and vertex l with zl = 4.
Black dots • represent spin- 1

2 states, which are enclosed by large circles ◦ representing vertices
and symmetrization of the product of spin- 1

2 ’s at each vertex. Solid lines —— represent edges
which anti-symmetrize the pair of connected spin- 1

2 ’s.

The paper is divided into five parts:

(i) We define the basic AKLT model on an arbitrary connected graph and construct the unique
VBS ground state using symmetrization and anti-symmetrization of states. A graphical
illustration is included (section 2).

(ii) We introduce the generalized (inhomogeneous) AKLT model and give the condition of the
uniqueness of the ground state. The VBS ground state is constructed using the Schwinger
boson representations. Within this formulation, the relation between the VBS state and
the Laughlin states of the fractional quantum Hall effect becomes obvious [4, 24, 26]
(section 3).

(iii) In order to study entanglement of the VBS state, we cut the graph into two disconnected
parts: the block and the environment. We define the block Hamiltonian, and show that its
ground state is degenerate (section 4).

(iv) The density matrix of the block is proved to have a lot of zero eigenvalues. The
eigenvectors with non-zero eigenvalues form degenerate ground states of the block
Hamiltonian (section 5).

(v) Examples of the density matrix are given explicitly as special cases of the general result.
We also formulate some open problems (section 6).

In sections 2 and 3 we follow the paper of Kirillov and Korepin written in 1990, see [36].

2. The basic AKLT model

We start with the definition of the basic AKLT model on a connected graph. A graph consists
of two types of elements, namely vertices and edges. Every edge connects two vertices. As
in figure 1, a vertex is drawn as a (large) circle ◦ and an edge is drawn as a solid line ——
connecting two vertices. For every pair of vertices in the connected graph, there is a walk1

from one to the other. Vertices can also be called sites and edges sometimes called links or
bonds. In the case of a disconnected graph, the Hamiltonian (1) is a direct sum with respect to

1 A walk is an alternating sequence of vertices and edges, beginning and ending with a vertex, in which each vertex
is incident to the two edges that precede and follow it in the sequence, and the vertices that precede and follow an
edge are the end vertices of that edge.
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connected components and the ground state is a direct product. We shall start with a connected
graph. We shall also assume that the graph consists of more than one vertices, otherwise there
would be no interaction at all. Let us introduce notations. By Sl we shall denote the spin
operator located at vertex l with spin value Sl . In the basic model we require that Sl = 1

2zl ,
where zl is the number of incident edges (connected to vertex l), also known as the valence or
coordination number (the number of nearest neighbors of the vertex l). The relation between
the spin value and coordination number must be true for any vertex l, including boundaries.
This will guarantee uniqueness of the ground state. The Hamiltonian describes interactions
between nearest neighbors:

H =
∑
〈kl〉

H(k, l). (1)

Here H(k, l) describes the interaction between spins at vertices k and l connected by an edge,
and we sum over all edges 〈kl〉. The Hamiltonian density is H(k, l). To write down an explicit
form of H(k, l), we define a projector πJ (k, l):

πJ (k, l) =
j �=J∏

|Sk−Sl |�j�Sk+Sl

(Sk + Sl)
2 − j (j + 1)

J (J + 1) − j (j + 1)
. (2)

Operator πJ (k, l) projects the edge spin Jkl ≡ Sk + Sl on the subspace with fixed total
spin value J and |Sk − Sl| � J � Sk + Sl . Note that we could expand (Sk + Sl)

2 =
2Sk·Sl + Sk(Sk + 1) + Sl(Sl + 1). So that projector πJ (k, l) in (2) is a polynomial in the scalar
product (Sk·Sl ) of degree 2Smin, where Smin ≡ min{Sk, Sl} is the minimum of the two spin
values of the same edge. For example with Sk = Sl = 1, we may have a quadratic polynomial:

π2(k, l) = 1
6 (Sk·Sl )

2 + 1
2 (Sk · Sl) + 1

3 . (3)

In the basic model we define the Hamiltonian density H(k, l) as

H(k, l) = A(k, l)πSk+Sl
(k, l), H(k, l) � 0 (4)

with A(k, l) an arbitrary positive real coefficient (it may depend on the edge 〈kl〉). So that
the Hamiltonian density for each edge is proportional to the projector on the subspace with
the highest possible edge spin value (Sk + Sl). The physical meaning is that interacting spins
do not form the highest possible edge spin (this will increase the energy) in the ground state.
The Hamiltonian in (1) is a linear combination of projectors with positive coefficients, which
shows that H is semi-positive definite.

The Hamiltonian (1) with condition

Sl = 1
2zl (5)

has a unique ground state [1, 2, 4, 36] known as the valence-bond-solid state. It can be
constructed as follows. Each vertex l has zl spin- 1

2 ’s. We associate each spin- 1
2 with an

incident edge. In such a way each edge has two spin- 1
2 ’s at its ends. We anti-symmetrize the

wavefunction of these two spin- 1
2 ’s. So that anti-symmetrization is done along each edge. We

also symmetrize the product of spin- 1
2 ’s at each vertex (each large circle). Let us write down

the VBS ground state algebraically. We label the particular dot from vertex l connected with
some dot from vertex k by lk (correspondingly, that dot from vertex k is labeled by kl). In this
way we have specified a unique prescription of labels with dots. Then the anti-symmetrization
results in the singlet state

|�〉kl = 1√
2

(|↑〉lk |↓〉kl
− |↓〉lk |↑〉kl

)
. (6)

4
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The direct product of all these |�〉 singlet states corresponds to all edges in our graph:∏
〈kl〉

|�〉kl . (7)

We still have to complete the symmetrization (circles) at each vertex. We denote the
symmetrization operator of zl dots in vertex l by P(l), then the symmetrization at each
vertex is carried out by taking the product

∏
l P(l) of all vertices. Finally, the unique VBS

ground state can be written as

|VBS〉 =
∏

l

P(l)
∏
〈kl〉

|�〉kl . (8)

Here the first product runs over all vertices and the second over all edges. If the coordination
number zl is a constant over all vertices in the graph except for boundaries, then we would
have the same spin value at each bulk vertex. In that case the basic model is also referred to
as the homogeneous model.

3. The generalized AKLT model

In the generalized AKLT model, relation (5) is generalized. We associate a positive integer
Mkl (Mkl ≡ Mlk) to each edge 〈kl〉 of the graph. We shall call Mkl multiplicity numbers.
The Hamiltonian describes interactions between nearest neighbors (vertices connected by an
edge):

H =
∑
〈kl〉

H(k, l). (9)

However, the Hamiltonian density is no longer proportional to a single projector in general. It
is a linear combination of projectors

H(k, l) =
Sk+Sl∑

J=Sk+Sl−Mkl+1

AJ (k, l)πJ (k, l), H(k, l) � 0. (10)

Projector πJ (k, l) is given by (2), and AJ (k, l)’s are arbitrary positive coefficients. So that
H(k, l) projects the edge spin on the subspace with spin value J greater than Sk + Sl − Mkl .
Physically formation of edge spin higher than Sk + Sl − Mkl would increase the energy.

The condition of uniqueness of the ground state was introduced in [36]:

2Sl =
∑

k

Mkl, ∀ l. (11)

Here Sl is the spin value at vertex l and we sum over all edges incident to vertex l (connected to
vertex l). The Hamiltonian (9) has a unique ground state if (11) is valid. The relation 2Sl = zl

for the basic model is a special case when Mkl = 1. Condition (11) can be put into an invariant
form. Let us define a column vector S, the lth component of which is associated with vertex l
of the graph and equal to Sl . The number of components is equal to the number of vertices N.
Next, we define another column vector M with its dimension equal to the number of edges M
in the graph. The kth and lth components of this vector are associated with edge 〈kl〉 and both
equal to Mkl . The most important geometrical characteristic of the graph is the vertex–edge
incidence matrix Î (see [27]). This is a rectangular matrix with N rows and M columns. Each
row is associated with the vertex and each column is associated with the edge. If the vertex
belongs to the edge the corresponding matrix element is equal to one, otherwise zero. Then
condition (11) of uniqueness can be re-written as

2S = Î·M. (12)

For more details we refer to [36].
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Under condition (11) or (12), the unique ground state of Hamiltonian (9) is referred to as
the generalized VBS state. It is constructed by introducing the Schwinger boson representation
[4, 18, 32, 36, 50, 51]. We define a pair of independent canonical bosonic operators al and bl

for each vertex l:[
ak, a

†
l

] = [
bk, b

†
l

] = δkl (13)

with all other commutators vanishing:

[ak, al] = [bk, bl] = [ak, bl] = [
ak, b

†
l

] = 0, ∀ k, l. (14)

Spin operators are represented as

S+
l = a

†
l bl, S−

l = b
†
l al, Sz

l = 1
2

(
a
†
l al − b

†
l bl

)
. (15)

To reproduce the dimension of the spin-Sl Hilbert space at vertex l, a constraint on the total
boson occupation number is required:

1
2

(
a
†
l al + b

†
l bl

) = Sl. (16)

As a result, the VBS ground state in the Schwinger representation is given by

|VBS〉 =
∏
〈kl〉

(
a
†
kb

†
l − b

†
ka

†
l

)Mkl |vac〉. (17)

This representation shows that for a full graph (each vertex is connected to every other vertex)
the VBS state coincides with the Laughlin wavefunction [4, 24, 26]. In (17) the product runs
over all edges and the vacuum |vac〉 is annihilated by any of the annihilation operators:

al |vac〉 = bl |vac〉 = 0, ∀ l. (18)

Note that
[
a
†
k, b

†
l

] = 0,∀ k, l. To prove that (17) is the ground state we need only to

verify for any vertex l and edge 〈kl〉: (i) the total power of a
†
l and b

†
l is 2Sl , so that

we have spin-Sl at vertex l; (ii) − 1
2

(∑
l′ �=l Ml′k +

∑
k′ �=k Mk′l

)
� J z

kl ≡ Sz
k + Sz

l �
1
2

(∑
l′ �=l Ml′k +

∑
k′ �=k Mk′l

)
by a binomial expansion, so that the maximum value of the

edge spin Jkl is 1
2

(∑
l′ �=l Ml′k +

∑
k′ �=k Mk′l

) = Sk + Sl − Mkl (from SU(2) invariance, see
[4]). Therefore, the state |VBS〉 defined in (17) has spin-Sl at vertex l and no projection onto
the Jkl > Sk + Sl − Mkl subspace for any edge. The introduction of Schwinger bosons can be
used to construct a spin coherent state basis in which spins at each vertex behave as classical
unit vectors, see [18, 32, 36, 50, 51].

4. The entanglement between block and environment

The VBS state (see (8) and (17)) has non-trivial entanglement properties. The density matrix
of the VBS state is a projector

ρ = |VBS〉〈VBS|
〈VBS|VBS〉 . (19)

Let us cut the original graph into two subgraphs B and E, that is, we cut through some number
of edges such that the resulting graph B ∪ E is disconnected (no edge between B and E). We
may call one of them, say B, the block, and the other one, E, the environment. The distinction
is arbitrary and the two subsystems are equivalent in measuring entanglement.

Let us focus on the block (subsystem B). It is described by the density matrix ρb of the
block (obtained by tracing out degrees of freedom of the environment E from the density
matrix ρ (19)):

ρb = Tre[ρ]. (20)

6
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In (20) and below we use subscript b for block and e for environment. The density matrix ρb

contains all correlation functions in the VBS ground state as matrix entries [4, 31, 32, 50].
The entanglement can be measured by the von Neumann entropy

Sv.N = − Trb[ρb ln ρb] = −
∑
λ �=0

λ ln λ (21)

or the Rényi entropy

SR(α) = 1

1 − α
ln

{
Trb

[
ρα

b

]} = 1

1 − α
ln

( ∑
λ �=0

λα

)
, α > 0. (22)

Here λ’s are (non-zero) eigenvalues of density matrix ρb and α is an arbitrary parameter.
It was shown by using the Schmidt decomposition [41] that non-zero eigenvalues of the
density matrix of subsystem B (block) is equal to those of the density matrix of subsystem
E (environment). So the two subsystems are equivalent in measuring entanglement in terms
of entanglement entropies, i.e. Sv.N [B] = Sv.N [E] and SR[B] = SR[E]. This fact has been
used in obtaining entanglement entropies of one-dimensional VBS states as in [11, 32]. We
shall show that the spectrum of the density matrix ρb contains a lot of zero eigenvalues. In
order to understand this and give the subsystem (block) a more complete description, we first
introduce the Hamiltonian of the subsystem (called the block Hamiltonian).

The block Hamiltonian Hb is the sum of Hamiltonian densities H(k, l) with both k ∈ B

and l ∈ B, i.e. nearest neighbor interactions (edge terms) within the block B:

Hb =
∑

〈kl〉∈B

H(k, l), k ∈ B, l ∈ B. (23)

Here H(k, l) is given in (4) for the basic model and (10) for the generalized model, for k and
l connected by an edge. In (23) no cut edges are present (boundary edges between subgraphs
B and E removed). This Hamiltonian has degenerate ground states because uniqueness
conditions (5) and (11) are not valid. Let us discuss the degeneracy of ground states of (23).
Let us denote by L the number of vertices on the boundary of the block B. The boundary
consists of those vertices with one or more cut incident edge, see figure 2. The degeneracy
deg of ground states of Hb is given by the Katsura’s formula

deg =
∏
l∈∂B

[(∑
k∈∂E

Mkl

)
+ 1

]
, 〈kl〉 ∈ {cut edges}. (24)

Here ∂B denotes vertices on the boundary of the block B and ∂E are vertices on the boundary
of the environment E. In (24) we have L terms in the product. Formula (24) is valid for
both the basic and the generalized model. For the basic model all Mkl = 1, including those
corresponding to cut edges. Take, for example, a particularly simple case that each vertex on
the boundary of the block ∂B was connected to exactly one vertex on the boundary of the
environment ∂E. Then the degeneracy deg = 2L. A general proof of formula (24) is given
in the appendix. The subspace spanned by the degenerate ground states is called the ground
space, with the dimension given by deg in (24). We emphasize at this point that the block B
should contain more than one vertices, otherwise the block Hamiltonian vanishes Hb = 0 and
the whole Hilbert space becomes the ground space. We discuss the density matrix for a single
vertex block at the end of the following section. It was shown for one-dimensional models
in [50, 51] that the spectrum of density matrix ρb is closely related to the block Hamiltonian.
The density matrix is a projector onto the ground space multiplied by another matrix. We shall
prove the statement for an arbitrary graph in the following section.

7
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B

Block
E

Environment

Figure 2. Example of the cutting for the basic model. The curved double line represents the
boundary between the two subgraphs. We have the block B on the left and the environment E on
the right. Solid lines —— represent edges while dashed lines - - - - represent cut edges. Each
dashed line connects two dots. All vertices in the figure belong to the boundary of B or E because
of the presence of one or more cut incident edges (dashed lines).

5. The density matrix

Let us denote by Nb the number of vertices in the block B. Then the dimension dim of the
Hilbert space of the block B is equal to

∏
l(2Sl + 1) with l ∈ B, which is also the dimension

of the density matrix ρb. The value is

dim =
∏
l∈B

[zl + 1] , (25)

for the basic model and

dim =
∏
l∈B

⎡
⎣

⎛
⎝ ∑

k∈(B∪∂E)

Mkl

⎞
⎠ + 1

⎤
⎦ , (26)

for the generalized model. In both expressions (25) and (26) we have Nb factors in the product.
Take, for example, a particularly simple basic model in which each vertex is connected with
the same number z of vertices, including those corresponding to boundary vertices. Then the
dimension dim = (z + 1)Nb . The density matrix ρb would have dim number of eigenvalues.
However, most of the eigenvalues are vanishing and ρb is a projector onto a much smaller
subspace multiplied by another matrix. To prove the statement, we define a support to be
the subspace of the Hilbert space of the block B with non-zero eigenvalues, i.e. it is spanned
by eigenstates of ρb with non-zero eigenvalues. The dimension of the support is denoted
by D. We have the following theorem on the structure of the density matrix ρb (assuming
that the block have more than one vertices, i.e. Nb � 2, so that Hb is not equal to zero
identically):

Theorem 1. The support of ρb (20) is a subspace of the ground space of the block Hamiltonian
Hb (23).

8
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To prove the theorem, we recall that H = ∑
〈kl〉∈B H(k, l) and each H(k, l) is a sum of

projectors (10). We have H(k, l) � 0. Then the construction of the VBS ground state (8) and
(17) guarantees that there is no projection onto the subspace with higher edge spins for any
edge. Therefore,

H(k, l)|VBS〉 = 0, ∀ 〈kl〉. (27)

In particular, this is true for edges inside the block B, i.e. k ∈ B and l ∈ B. Now, from the
definition of ρb in (20), we have

H(k, l)ρb = H(k, l) Tre[ρ]

= H(k, l) Tre[|VBS〉〈VBS|]
〈VBS|VBS〉

= Tre[H(k, l)|VBS〉〈VBS|]
〈VBS|VBS〉 = 0, k ∈ B, l ∈ B. (28)

In the last step of (28) we have used (27) and the fact that edge 〈kl〉 lies completely inside
block B so that H(k, l) commutes with tracing in the environment E. Equation (28) is true for
any edge in B, so that

Hbρb =
∑

〈kl〉∈B

H(k, l)ρb = 0, k ∈ B, l ∈ B. (29)

If we diagonalize the density matrix ρb

ρb =
∑
λ �=0

λ|λ〉〈λ|, (30)

where |λ〉 is the eigenstate corresponding to eigenvalue λ. Then (29) can be re-written as

Hb

∑
λ �=0

λ|λ〉〈λ| =
∑
λ �=0

λHb|λ〉〈λ| = 0, (31)

Note that {|λ〉} is a linearly independent set. Therefore the solution of (31) means that

Hb|λ〉 = 0, λ �= 0. (32)

Expression (32) states that any eigenstate of ρb (with non-zero eigenvalue) is a ground state
of Hb. As a result, we have proved the theorem that the support of ρb is a subspace of the
ground space of Hb, so that D � deg. The density matrix takes the form of a projector
multiplied by another matrix and the projector projects on the ground space. Also, it is clear
from expressions (24)–(26) that deg � dim (∂B ⊆ B so that L � Nb). Usually, deg is much
smaller than dim because the former involves only contributions from boundary vertices of the
block while the latter also involves contributions from all bulk vertices. Then as a corollary
of the theorem, we have D � deg � dim.

If the block B consists of only one vertex with a spin-S, then we conjecture that it is in the
maximally entangled state. The support has dimension D = 2S + 1.

6. Examples of the density matrix and open problems

The density matrix of the block has been studied in [11, 32] and diagonalized directly in
[50, 51] for one-dimensional models, which illustrates the theorem explicitly. It was shown
for different one-dimensional AKLT models that the inequality D � deg is always saturated,
i.e. D = deg, so that the support is exactly equal to the ground space. The density matrix
is proportional to the projector on the degenerate ground space of the block Hamiltonian.

9
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Therefore the projector PD on the support of ρb is equal to the projector Pdeg on the ground
space of Hb:

PD = Pdeg (33)

If we denote the identity of the Hilbert space of the block by Idim, then we also have

ρb(Idim − Pdeg) = 0. (34)

Using these relations (33) and (34), the density matrix can be put in the following matrix form:

ρb = 	 · Pdeg = Pdeg · 	 (35)

where 	 is a diagonal matrix with non-zero eigenvalues of ρb as entries. It was also proved in
[50, 51] that in the large block limit Nb → ∞, all eigenvalues become the same so that

lim
Nb→∞

	 = 1

D
ID, (36)

where ID is the identity of the support. As a consequence, the density matrix approaches the
following limit:

lim
Nb→∞

ρb ≡ ρ∞ = 1

deg
Pdeg = 1

D
PD, (37)

where ρ∞ behaves as the identity in the ground space or support.
In below we give explicitly the form of the density matrix for the most general model in

one dimension, i.e. the one-dimensional generalized (inhomogeneous) model [51]. Then we
formulate some open problems.

For the generalized model in one dimension, we label the left ending site of the block by
l = 1 with spin value S1 = 1

2 (M01 + M12) and the right ending site by l = L with spin value
SL = 1

2 (ML−1,L +ML,L+1). The block B consists of Nb contiguous bulk vertices and the block
Hamiltonian is

Hb =
(Nb−1)terms∑
(l,l+1)∈block

⎛
⎝ Sl+Sl+1∑

J=Sl+Sl+1−Ml,l+1+1

AJ (l, l + 1)πJ (l, l + 1)

⎞
⎠ (38)

with πJ (l, l + 1) defined in (2) and AJ (l, l + 1) positive coefficients.
As shown in [51], the ground space of Hb is (M01 + 1)(ML,L+1 + 1)-dimensional and

can be spanned by {|VBSNb
(J,M)〉, J = |J−|, |J−| + 1, . . . , J+,M = −J,−J + 1, . . . , J }

(see [51] for an explicit construction of these degenerate VBS states of the block). Here
J− = 1

2 (M01 − ML,L+1) and J+ = 1
2 (M01 + ML,L+1). These states are eigenstates of ρb with

non-zero eigenvalues.
In the large block limit, assuming that M01 → S− and ML,L+1 → S+, we have

lim
Nb→∞

ρb ≡ ρ∞ = 1

(S− + 1)(S+ + 1)
P(S−+1)(S++1). (39)

Here S− and S+ are the first and last spins in the block, respectively. The von Neumann entropy
is equal to the Rényi entropy

Sv.N = SR = ln[(S− + 1)(S+ + 1)] (40)

in the limit.
For finite block, ρb|VBSNb

(J,M)〉 = 	(J )|VBSNb
(J,M)〉. The eigenvalues 	(J ) are

independent of M and given by

	(J ) = 1

(M01 + 1)(ML,L+1 + 1)

⎧⎨
⎩1 +

M<∑
l=1

(2l + 1)

⎡
⎣Nb−1∏

j=1

λ(l,Mj,j+1)

⎤
⎦ poly(l, J )

⎫⎬
⎭ , (41)
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in which M< = min{Mj,j+1, j = 1, . . . , L − 1} being the minimum of the multiplicity
numbers, poly(l, J ) is a polynomial of J depending on l, and λ(l,Mj,j+1) is given by

λ(l,Mij ) = (−1)lMij !(Mij + 1)!

(Mij − l)!(Mij + l + 1)!
. (42)

So that matrix Λ consists of these eigenvalues (41) in diagonal form. The density matrix is
the projector P(S−+1)(S++1) multiplied by the matrix Λ.

Corresponding results for the one-dimensional basic model [11] and homogeneous model
[50] can be considered as special cases in which all Mj,j+1 = 1 (all bulk Sj = 1, S− = S+ = 1)
for the basic model and all Mj,j+1 = S (S− = S+ = S) for the homogeneous model.

One open problem is the calculation of non-zero eigenvalues of the density matrix ρb for
general and more complicated graphs. One should start with the Cayley tree (also known as
the Bethe tree). We expect that an exact explicit expression for the non-zero eigenvalues is
possible, because it has no loops. It is also important to calculate non-zero eigenvalues of
ρb for graphs with loops. In all known examples [11, 50, 51], where the density matrix of a
large block has been calculated, all non-zero eigenvalues coincide. So that the density matrix
of a large block is proportional to a projector. We conjecture that this will be the case for
all connected graphs. In other words, we expect that in the large block limit, each non-zero
eigenvalue should approach the same value 1

D
= 1

deg and the entanglement entropies should
be saturated, i.e. Sv.N = SR = ln D = ln (deg).

7. Conclusion

We have studied the entanglement of the AKLT model. We formulate the AKLT model
on an arbitrary connected graph. The Hamiltonian (1), (9) is a sum of projectors which
describe interactions between nearest neighbors. The condition of uniqueness of the ground
state relates the spin value at each vertex with multiplicity numbers associated with edges
incident (connected) to the vertex, see (5), (11), (12). The unique ground state is known as
the valence-bond-solid state (8), (17). The VBS state can be used instead of the cluster state
in measurement-based quantum computation, see [7].

To study the entanglement, the graph is divided into two parts: the block and the
environment. We investigate the density matrix ρb of the block and show that it has many
zero eigenvalues. We describe the subspace (called the support) of eigenvectors of ρb with
non-zero eigenvalues. We have proved (see theorem in section 5) that this subspace is the
degenerate ground space of some Hamiltonian, we call it the block Hamiltonian (23).

The entanglement can be measured by the von Neumann entropy or the Rényi entropy
of the density matrix ρb. Most eigenvalues of ρb vanish and have no contribution to the
entanglement entropies. The density matrix takes the form of a projector on the ground space
multiplied by another matrix (conjectured in [50] for an arbitrary graph).

Non-zero eigenvalues of ρb have been calculated for a variety of one-dimensional AKLT
models [11, 32, 50, 51]. They are given as illustrations. We find that in these cases the support
coincides with the ground space, so their dimensions are equal D = deg In the large block
limit, all non-zero eigenvalues become the same and the density matrix is proportional to a
projector (39). The von Neumann entropy equals the Rényi entropy and both take the saturated
value Sv.N = SR = ln D = ln(deg).

For more complicated graphs, non-zero eigenvalues of the density matrix are still
unknown. One open problem is to calculate those eigenvalues. One may start with the
Cayley tree because there are no loops and we expect to obtain exact explicit expressions of
the eigenvalues.

11
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Appendix. Ground state degeneracy of the block Hamiltonian

We prove Katsura’s formula (24) for the degeneracy of ground states of the block Hamiltonian.
The block Hamiltonian is defined in (23). We first look at the uniqueness condition (11). For
an arbitrary vertex l in the block B, the condition can be written as

2Sl =
∑

k

Mkl =
∑
k∈B

Mkl +
∑
k∈∂E

Mkl, l ∈ B. (A.1)

Note that the sum over vertices k ∈ ∂E is outside the block B. These terms are only present
for boundary vertices l ∈ ∂B. Expression (A.1) is valid for any vertex in the block (for a bulk
vertex the last summation vanishes). Next we define the block VBS state

|VBSNb
〉 =

∏
〈kl〉∈B

(
a
†
kb

†
l − b

†
ka

†
l

)Mkl |vac〉, k ∈ B, l ∈ B. (A.2)

Here edge 〈kl〉 lies completely inside the block B. Now an arbitrary ground state of the block
Hamiltonian Hb takes the following form:

|G〉 =
[

Lterms∏
l∈∂B

f
(
a
†
l , b

†
l

)] |VBSNb
〉, (A.3)

where f
(
a
†
l , b

†
l

)
is a polynomial (may depend on the vertex l) in a

†
l and b

†
l and the product runs

over all boundary vertices (with the number denoted by L). The degree of this polynomial is
equal to

∑
k∈∂E Mkl . (Each term in the polynomial must have the same total power

∑
k∈∂E Mkl

of a
†
l and b

†
l .) It is straightforward to verify that |G〉 in (A.3) is a ground state:

(i) The power of a
†
l and b

†
l in |VBSNb

〉 is
∑

k∈B Mkl (see (A.2)) so that the total power of a
†
l

and b
†
l in (A.3) is

∑
k∈B Mkl +

∑
k∈∂E Mkl = 2Sl according to (A.1). Therefore, we have

the correct power 2Sl of the bosonic operators a
†
l and b

†
l for each vertex l in the block B

(constraint (16) is satisfied).
(ii) There is no projection on any edge spin value greater than Sk + Sl − Mkl + 1 because of

the construction of the block VBS state (A.2). (One could use the same reasoning as in
section 3.)

Therefore the degeneracy deg of the ground states of Hb is equal to the number of linearly
independent states of the form (A.3). Since a

†
l ’s and b

†
l ’s are bosonic and commute, the number

of linearly independent polynomials f
(
a
†
l , a

†
l

)
for an arbitrary l is equal to its degree plus one,

i.e.
(∑

k∈∂E Mkl

)
+ 1,∀ l ∈ ∂B. So that the total number of linearly independent polynomials

of the form
∏Lterms

l∈∂B f
(
a
†
l , b

†
l

)
is the product of these numbers for each l ∈ ∂B. Finally, the

ground state degeneracy of the block Hamiltonian Hb is (Katsura’s formula)

deg =
∏
l∈∂B

[(∑
k∈∂E

Mkl

)
+ 1

]
. (A.4)

In the case of the basic model all Mkl = 1, formula (A.4) has a graphical illustration, see
figure 2. We count the number # of all cut edges (dashed lines) incident to one boundary
vertex of the block, then add one to the number #. The degeneracy is the product of these
(# +1)’s for each boundary vertex.

12



J. Phys. A: Math. Theor. 41 (2008) 505302 Y Xu and V E Korepin

References

[1] Affleck A, Kennedy T, Lieb E H and Tasaki H 1987 Rigorous results on valence-bond ground states in
antiferromagnets Phys. Rev. Lett. 59 799–802

[2] Affleck A, Kennedy T, Lieb E H and Tasaki H 1988 Valence bond ground states in isotropic quantum
antiferromagnets Commun. Math. Phys. 115 477–528

[3] Amico L, Fazio R, Osterloh A and Vedral V 2008 Entanglement in many-body systems Rev. Mod. Phys.
80 517–76

[4] Arovas D P, Auerbach A and Haldane F D M 1988 Extended Heisenberg models of antiferromagnetism:
analogies to the fractional quantum Hall effect Phys. Rev. Lett. 60 531–4

[5] Auerbach A 1998 Interacting Electrons and Quantum Magnetism (New York: Springer)
[6] Bennett C H and DiVincenzo D P 2000 Quantum information and computation Nature 404 247–55
[7] Brennen G K and Miyake A 2008 Measurement-based quantum computer in the gapped ground state of a

two-body Hamiltonian arXiv:0803.1478
[8] Cramer M, Eisert J and Plenio M B 2007 Statistical dependence of entanglement-area laws Phys. Rev. Lett.

98 220603 (arXiv:quant-ph/0611264)
[9] Cramer M, Eisert J, Plenio M B and Dreisig J 2006 On an entanglement-area-law for general bosonic Harmonic

lattice systems Phys. Rev. A 73 012309 (arXiv:quant-ph/0505092)
[10] Fan H and Korepin V E 2008 Quantum entanglement of the higher spin matrix product states (in preparation)
[11] Fan H, Korepin V E and Roychowdhury V 2004 Entanglement in a valence-bond-solid state Phys. Rev.

Lett. 93 227203 (arXiv:quant-ph/0406067)
[12] Fan H, Korepin V E and Roychowdhury V 2005 Valence-bond-solid state entanglement in a 2D Cayley tree

arXiv:quant-ph/0511150
[13] Fan H, Korepin V E, Roychowdhury V, Hadley C and Bose S 2007 Boundary effects to the entanglement

entropy and two-site entanglement of the spin-1 valence-bond solid Phys. Rev. B 76 014428 (arXiv:quant-
ph/0605133)

[14] Fannes M, Nachtergaele B and Werner R F 1991 Valence bond states on quantum spin chains as ground states
with spectral gap J. Phys. A: Math. Gen. 24 L185–90

[15] Fannes M, Nachtergaele B and Werner R F 1992 Finitely correlated states on quantum spin chains Commun.
Math. Phys. 144 443–90

[16] Franchini F, Its A R, Jin B-Q and Korepin V E 2007 Ellipses of constant entropy in the XY spin chain J. Phys.
A: Math. Theor. 40 8467 (arXiv:quant-ph/0609098v5)
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